Photoelectrochemical Behavior of a Molecular Ru-Based Water-Oxidation Catalyst Bound to TiO2-Protected Si Photoanodes.
نویسندگان
چکیده
A hybrid photoanode based on a molecular water oxidation precatalyst was prepared from TiO2-protected n- or p+-Si coated with multiwalled carbon nanotubes (CNT) and the ruthenium-based water oxidation precatalyst [RuIV(tda)(py-pyr)2(O)], 1(O) (tda2- is [2,2':6',2″-terpyridine]-6,6″-dicarboxylato and py-pir is 4-(pyren-1-yl)-N-(pyridin-4-ylmethyl)butanamide). The Ru complex was immobilized by π-π stacking onto CNTs that had been deposited by drop casting onto Si electrodes coated with 60 nm of amorphous TiO2 and 20 nm of a layer of sputtered C. At pH = 7 with 3 Sun illumination, the n-Si/TiO2/C/CNT/[1+1(O)] electrodes exhibited current densities of 1 mA cm-2 at 1.07 V vs NHE. The current density was maintained for >200 min at a constant potential while intermittently collecting voltammograms that indicated that over half of the Ru was still in molecular form after O2 evolution.
منابع مشابه
Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell.
A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO2/TiO2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore-catalyst assembly. The assembly, [(4,4'-(PO3H2)2bpy)2Ru(4-Mebpy-4'-bimpy)Ru(tpy)(OH2)](4+) ([Ru(a) (II)-Ru(b) (II)-OH2](4+), combines both a...
متن کاملThe influence of structure and processing on the behavior of TiO2 protective layers for stabilization of n-Si/TiO2/Ni photoanodes for water oxidation.
Light absorbers with moderate band gaps (1-2 eV) are required for high-efficiency solar fuels devices, but most semiconducting photoanodes undergo photocorrosion or passivation in aqueous solution. Amorphous TiO2 deposited by atomic-layer deposition (ALD) onto various n-type semiconductors (Si, GaAs, GaP, and CdTe) and coated with thin films or islands of Ni produces efficient, stable photoanod...
متن کاملLight-Driven Water Splitting by a Covalently Linked Ruthenium-Based Chromophore− Catalyst Assembly
The preparation and characterization of new Ru(II) polypyridylbased chromophore−catalyst assemblies, [(4,4′-PO3H2-bpy)2Ru(4-Mebpy-4′-epic)Ru(bda)(pic)] (1, bpy = 2,2′-bipyridine; 4-Mebpy-4′-epic = 4-(4-methylbipyridin-4′-yl-ethyl)-pyridine; bda = 2,2′-bipyridine-6,6′-dicarboxylate; pic = 4-picoline), and [(bpy)2Ru(4-Mebpy-4′-epic)Ru(bda)(pic)] (1′) are described, as is the application of 1 in a...
متن کاملDynamics of Electron Recombination and Transport in Water- Splitting Dye-Sensitized Photoanodes
Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) use visible light to split water using molecular sensitizers and water oxidation catalysts codeposited onto mesoporous TiO2 electrodes. Despite a high quantum yield of charge injection and low requirement for the catalytic turnover rate, the quantum yield of water splitting in WS-DSPECs is typically low (<1%). Here we examine...
متن کاملEfficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces.
Plasma-enhanced atomic layer deposition of cobalt oxide onto nanotextured p(+)n-Si devices enables efficient photoelectrochemical water oxidation and effective protection of Si from corrosion at high pH (pH 13.6). A photocurrent density of 17 mA/cm(2) at 1.23 V vs RHE, saturation current density of 30 mA/cm(2), and photovoltage greater than 600 mV were achieved under simulated solar illuminatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 139 33 شماره
صفحات -
تاریخ انتشار 2017